

PII: S0040-4039(97)00278-5

Substituted 1,7-Dioxabicyclo[3.3.0]octanes: New Easy Access to the Perhydrofurofuran Core of Aflatoxins and Analogues

Francisco Alonso, Emilio Lorenzo and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080-Alicante, Spain Fax: + 34-6-5903549; E-mail: yus@aitana.cpd.ua.es

Abstract: The reaction of 3-chloro-2-(chloromethyl)-1-propene (1) with lithium and a catalytic amount of naphthalene in the presence of different carbonyl compounds in THF a -78°C affords, after hydrolysis, the corresponding methylenic diols 2, which by a tandem hydroboration-oxidation with hydrogen peroxide followed by treatment with PCC (for ketone derivatives) or RuCl₂(PPh₃)₃ (for aldehyde derivatives) yields the expected perhydrofurofurans 3. © 1997 Elsevier Science Ltd.

The bis-tetrahydrofuran fragment is present in many biologically active natural compounds. Among them, aflatoxins^{1,2} B_2 and G_2 (I and II, respectively; metabolites of the mold *Aspergillus flavus*) are important mycotoxins due to their potent toxicity and carcinogenicity³ and the fact that they have been detected in several foods, so intense interest from toxicologists and government regulators has been shown.⁴ Other examples of interesting molecules containing the above mentioned fragment are asteltoxin⁵ (III; isolated from *Aspergillus stellatus*, is a ATPase inhibitor with a toxicity comparable to that of aflatoxins) and compounds IV⁶ (a non-peptidal ligand for HIV-1 protease-inhibitor complex) or V⁷ (with strong antibacterial activity against *Pseudomonas aeruginosa*).

Chart 1.

On the other hand, in the last few years we have developed an efficient methodology consisting in carrying out lithiation processes in the presence of a catalytic amount of an arene as electron carrier under very mild reaction conditions.⁸ Using this procedure we were able to develop new methods to prepare organolithium compounds starting from non-halogenated materials⁹ as well as to prepare very reactive functionalised organolithium compounds¹⁰ or polylithiated synthons.¹¹ In this paper we describe the application of one of the last type of polyanionic intermediates in the key step for the synthesis of the perhydrofurofuran core of compounds of type I-V (Chart 1).

The reaction of 3-chloro-2-(chloromethyl)-1-propene $(1)^{12}$ with lithium and a catalytic amount of naphthalene (5 mol %) in the presence of different carbonyl compounds as electrophilic components (Barbier-type reaction conditions)¹³ in THF at -78°C, yielded, after hydrolysis with water, the corresponding methylenic diols 2.¹⁴ Tandem hydroboration (with the complex BH₃·THF at 0°C)-oxidation¹⁵ with hydrogen peroxide under basic conditions (3 M NaOH at 0°C) followed by treatment with PCC¹⁶ (CH₂Cl₂, 0°C) for ketone derivatives (R¹, R² ≠ H) or RuCl₂(PPh₃)₃ (PhH, 0°C) for aldehyde derivatives (R² = H) led to the direct formation of the corresponding perhydrofurofurans **3** (Scheme 1 and Table 1).

Scheme 1. Reagents and conditions: i, Li, $C_{10}H_8$ cat. (5 %), R^1R^2CO , THF, -78°C; ii, H_2O ; iii, $BH_3 \cdot THF$, 0°C; iv, 33% H_2O_2 , 3 M NaOH, 0°C; iv, PCC, CH_2Cl_2 , 0°C or $RuCl_2(PPh_3)_3$, PhH, 0°C (for $R^2 = H$).

In the case of aldehyde (**3a,b**) or unsymmetrically substituted ketones (**3f,g**) derivatives, the expected diastereoisomers mixture (*trans* + *cisI* + *cisII*) was obtained (Chart 2). However, the mentioned diastereoisomeric compounds could be separated by column chromatography (silica gel, hexane/diethyl ether) and their structures unequivocally assigned by 300 MHz ¹H NMR experiments (mainly nOe studies), considering their symmetry properties. For instance, for compound **3b**, the *trans*-isomer ($t_r = 11.75 \text{ min}^{18}$) is the only one which shows two signals for the *tert*-butyl groups ($\delta_H 0.89$, 0.92 and $\delta_C 25.6$, 25.95). For the other two *cis*-isomers (*cisI*: $t_r = 11.99 \text{ min}$, ¹⁸ $\delta_H 0.92$, $\delta_C 25.55$; *cisII*: $t_r = 11.84 \text{ min}$, ¹⁸ $\delta_H 0.87$, $\delta_C 25.7$) the structure was easily assigned by nOe experiments.¹⁹

Entry	Carbonyl compound	Diol 2 [yield (%)] ^b	Oxidation method ^c	Producta				
				No.	R1	R ²	Yield (%)d	trans/cisI/cisII e
1	PriCHO	2a [64] ^f	Α	3a	Pri	н	41	71/ - /29
2	Bu ⁴ CHO	2b [61]	Α	3b	But	н	57	53/21/26
3	Me ₂ CO	2c [74] ^f	В	3c	Me	Me	51	- ,
4	Et ₂ CO	2d [72] ^f	В	3d	Et	Et	75	-
5	(CH ₂) ₅ CO	3e [67] ^f	В	3e	(CH	I ₂)5	58	-
6	ButCOMe	3f [66]	В	3f	But	Me	68	47/47/6
7	PhCOMe	3g [41]	В	3 g	Ph	Me	53	36 5/47/17 8
8	CyCOCyh	2h [50]	В	3h	Cyh	Cyh	60	-

Table 1. Preparation of Compounds 3

^a All products **3** were >95% pure (GLC and 300 MHz ¹H NMR) and were fully characterised by spectroscopic means (IR, ¹H and ¹³C NMR, and mass spectrometry). ^b Isolated yield after column chromatography (silica gel, hexane/diethyl ether) based on the starting carbonyl compound. ^c Corresponding to the last step (reaction v in Scheme 1); Method A: RuCl₂(PPh₃)₃; Method B: PCC. ^d Isolated yield after column chromatography (silica gel, hexane/diethyl ether) based on the corresponding unsaturated diol **2**. ^e Diastereoisomers ratio determined by GLC; the corresponding assignments were made on the basis of NMR experiments on the isolated diastereoisomers (see text). ^f See reference 14. ^g These diastereoisomers could not be separated by column chromatography; assignments were carried out on the corresponding mixture. ^b Cy = cyclohexyl.

As a conclusion, we have described here the application of our previously described methodology ¹⁴ to the two-step preparation of substituted perhydrofurofurans, which constitute the heterocyclic core of important biologically active natural products.

ACKNOWLEDGEMENTS

This work was generously supported by the DGICYT of the Spanish MEC. E. L. thanks the MEC for a grant.

REFERENCES AND NOTES

- 1. For a review, see: Schuda, P. Top. Curr. Chem. 1980, 91, 75-111.
- For leading references, see: (a) Knight, J. A.; Roberts, J. C.; Roffey, P.; Sheppard, A. H. J. Chem. Soc., Chem. Commun. 1966, 706-707. (b) Büchi, G.; Foulkes, D. M.; Kuromo, M.; Mitchell, G. F.; Schneider, R. S. J. Am. Chem. Soc. 1967, 89, 6745-6753. (c) Büchi, G.; Francisco, M. A.; Lusch, J. M.; Schuda, P. F. J. Am. Chem. Soc. 1981, 103, 3497-3501. (d) Castellina, A. J.; Rapoport, H. J. Org. Chem. 1986, 51, 1006-1011. (e) Weeratunga, G.; Horne, S.; Rodrigo, R. J. Chem. Soc., Chem. Commun. 1988, 721-722. (f) Wolf, S.; Hoffmann, H. M. R. Synthesis 1988, 760-763. (g) Horne, S.;

Weeratunga, G.; Rodrigo, R. J. Chem. Soc., Chem. Commun. 1990, 39-41. (h) Kraus, G. A.; Johnston, B. E.; Applegate, J. M. J. Org. Chem. 1991, 56, 5688-5691. (i) Koreeda, M.; Dixon, L. A.; Hsi, J. D. Synlett 1993, 555-556. (j) Civitello, E. R.; Rapoport, H. J. Org. Chem. 1994, 59, 3775-3782. (k) Pirrung, M. C.; Lee, Y. R. Tetrahedron Lett. 1996, 37, 2391-2394.

- 3. Busby, W. F., Jr.; Wogan, G. N. In Chemical Carcinogens, 2nd ed.; Searle, C., Ed.; American Chemical Society: Washington, DC, 1984; Vol. 182, pp 945-1136.
- 4. Mycotoxins-Economic and Health Risks, Council for Agricultural Science and Technology: Ames, 1988 (taken from reference 2h).
- 5. See, for instance: (a) Mulzer, J.; Mohr, J.-T. J. Org. Chem. 1994, 59, 1160-1165. (b) Raman, J. V.; Lee, H. K.; Vleggaar, R.; Cha, J. K. Tetrahedron Lett. 1995, 36, 3095-3098.
- 6. Ghosh, A. K.; Kincaid, J. F.; Walters, D. E.; Chen. Y.; Chaudhuri, N. C.; Thompson, W. J.; Culberson, C.; Fitzgerald, P. M. D.; Lee, H. Y.; McKee, S. P.; Munson P. M.; Duong, T. T.; Darke, P. L.; Zugay, J. A.; Schleif, W. A.; Axel, M. G.; Lin, J.; Huff, J. R. J. Med. Chem. 1996, 39, 3278-3290, and references cited therein.
- 7. See, for instance: Chen, H.; Tan, R. X.; Liu, Z.; Zhang, Y. J. Nat. Prod. 1996, 59, 668-670, and references cited therein.
- 8. (a) For the first paper on this methodology, see: Yus, M.; Ramón, D. J. J. Chem. Soc., Chem. Commun. 1991, 398-400. (b) For a recent review, see: Yus, M. Chem. Soc. Rev. 1996, 155-161.
- 9. For the last paper on this topic from our laboratory, see: Alonso, E.; Ramón, D. J.; Yus, M. Tetrahedron 1996, 52, 14341-14348.
- 10. (a) For a review, see: Najera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181. (b) For the last paper on this topic from our laboratory, see: Ramón, D. J.; Yus, M. Tetrahedron 1996, 52, 13739-13750.
- 11. For the last paper on this topic from our laboratory, see: Guijarro, A.; Yus, M. Tetrahedron 1996, 52, 1797-1810.
- 12. This compound, which is commercially available (Aldrich), can be easily prepared from pentaerythritol: Mondanaro-Lynch, K.; Dailey, W. P. J. Org. Chem. 1995, 60, 4666-4668.
- 13. For a monograph on this process, see: Blomberg, C. The Barbier Reaction and Related One-Pot Processes; Springer-Verlag: Berlin, 1993.
- 14. (a) Ramón, D. J.; Yus, M. Tetrahedron Lett. 1992, 33, 2217-2220. (b) Gómez, C.; Ramón, D. J.; Yus, M. Tetrahedron 1993, 49, 4117-4126.
- 15. See, for instance: Zweifel, G.; Brown, H. C. Org. React. 1963, 13, 1-54.
- 16. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647-2650.
- 17. Tomioka, H.; Takai, K.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1974, 3221-3224.
- 18. Measured with a HP-5890 Series Gas Chromatograph equiped with a flame ionisation detector and a 12 m HP-1 capillary column (0.2 mm diam, 0.33 µm film thickness), using nitrogen (2 ml/min) as the carrier gas, $T_{detector} = 300^{\circ}$ C, $T_{injector} = 275^{\circ}$ C, $T_{column} = 60^{\circ}$ C (3 min) and 60-270°C (15°C/min).
- 19. The obtained nOe values for *cisII*-3b are as follows:

cis//-3b

(Received in UK 27 January 1997; accepted 7 February 1997)